
MonteCarlo Tree Search with Goal-Based Heuristic

Luca Sabatucci
1CNR - ICAR

Via Ugo La Malfa 153, Palermo, Italy
luca.sabatucci@icar.cnr.it

Abstract

The use of a domain-driven symbolic planner may provide in-
teresting performances, even with the most challenging plan-
ning domain. However, sometimes a domain utility-function
to be maximized does not exist: there are cases in which cre-
ating such a function is difficult and error-prone. This paper
investigates an alternative approach to afford deterministic
planning when no utility-functions are available. In cases like
these, classical planning may provide bad performances. The
use of a MonteCarlo approach, in conjunction with a goal-
based heuristic, has given promising results.

Introduction
Modern IoT applications and complex autonomous systems
more and more exploit search algorithms. For instance, some
categories of autonomous systems decide at run-time how
to adapt to unexpected events by running symbolic plan-
ners (Sabatucci and Cossentino 2015). This behaviour is typ-
ically related to service composition (Venero et al. 2020) and
program synthesis, i.e. deriving low-level programs from
high-level specifications, is another example of research ar-
gument closely related to planning (Bodı́k and Jobstmann
2013).

Recent planning competitions (Cenamor and Pozanco
2019; Vallati et al. 2015) highlighted many categories
of planning approach are available. Notable examples
are best-first planning (descending from A*), regression
planning, planning as model checking and planning based
on probabilistic models. Particular attention, in this paper,
is given to MonteCarlo tree search approaches (Browne et
al. 2012) that recently provided impressive results in large
deterministic domains. The key idea is to use a best-first
search guided by random simulations to estimate states’
value.

Now, one urgent research question is how to implement
a domain-independent planner that can scale up concern-
ing domain complexity and domain size (often, size is
taken as a measure of the number of objects, the number

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of relations or even the number of characters in a prob-
lem description). Scalability is a critical point, as under-
lined by the research community (Long and Fox 2003;
Vallati et al. 2015). In the last years, the performances of
modern planners are increasing very quickly (Richter and
Westphal 2010). For instance, planning as model checking
allowed of dealing with problems with millions of states in
timely fashion (Cimatti et al. 2003).

A successful method for solving such problems is the use
of accurate domain-specific utility-function, which gives for
every state a lower bound on the cost of reaching a solution
state. For being useful, such a function must be efficiently
computable. If planners driven by utility-functions perform
very well, when domain knowledge is not available, or the
function is not accurate, then performances may quickly
decay. The domain complexity hampers the scalability to
large-scale problems. This finding is visible, for instance,
in the experimental section of (Cimatti et al. 2003). Also,
MonteCarlo approaches (that demonstrated their power in
domains such as game/decision theory (Ginsberg 2001))
are less effective in evaluating random walks without
exploiting domain knowledge. In symbolic domains,
when raising the branching factor, the probability of end-
ing up in a goal state is very low (Nakhost and Müller 2009).

Context. We focus on the problem of planning in deter-
ministic domains when goals are provided via some pred-
icate, or temporal logic and no domain utility-function is
available.

Here, the main problem is the lack of a function for mea-
suring (and therefore maximizing) the utility of the explored
states. This condition often makes both classical planning
and MonteCarlo planning incapable of scaling up with the
size of the problem, unable to manage the explosion of
states. Several approaches exist to face this problem, mak-
ing the planner domain independent. A common approach
is to use state abstraction for reducing the number of states
to be explored. Another approach is planning as heuristic
search (Bonet and Geffner 2001). In consists in transform-
ing planning into a problem of heuristic search by automati-
cally extracting heuristics from planning domain encodings.
This approach can be combined by considering a goal as a



combination of several subgoals to be considered in isola-
tion (Scala et al. 2020).

Contribution. To the best of our knowledge, the planning
as heuristics and the subgoaling techniques are rarely used in
combination with monte-carlo search (Francès et al. 2017).

We propose to face planning problems by combining
a classical UCT (upper confidence bound) approach with
blind exploration of the state space to gain information on
its structure. The exploration is conducted through a heuris-
tic function (namely R2S) that is automatically derived from
the specifications of goals. R2S allows assigning a quality-
value to all the states of tree.

The result of this combination is the R2S MonteCarlo tree
search algorithm.

Evaluation. Finally, we set up an experimental evaluation
to test and compare performances of tree search approaches
in hard planning problem. The planning domain has been
extracted from an IoT domain in which a branching factor
of 40 makes the state explosion unmanageable for classical
planning.

Structure of the paper: Section 2 briefly introduces the
R2S heuristic and reports an algorithm to automatically de-
riving the value of a state, given a goal. Section 3 is a state
of the art section about MonteCarlo tree search. Section 4 is
the core of the paper, illustrating details of the proposed ap-
proach. The algorithm is compared with other approaches in
Section 5. Finally, some conclusions are drawn in Section 6.

The R2S Heuristic
The Resistance to Goal Satisfaction (R2S) adopts a corre-
spondence with the electrical domain to provide an intuition
of ‘distance in the space of states’ (Cossentino M., Sabatucci
L. and Lopes S. 2018).

The electrical metaphor mainly involves resistors and se-
ries and parallels of resistors. The idea is that, given a con-
junction of n propositional variables, φ = p1 ∧ p2 ∧ ...pn,
each single variable value (eg: pi == false) positively or
negatively contributes to the overall satisfaction of the for-
mula.

Consequently, the conjunction of predicates is similar to a
series of resistors. Accepting this, a disjunction of predicates
corresponds to a parallel of resistors.

To simplify computations, all resistors range from a min-
imum value Rmin to a maximum value Rmax. Actually, we
choose a sufficiently great Rmax, with the property that:

Rmin =
1

Rmax
(1)

Given a state S, a single predicate p is associated to Rmin
or Rmax according the basic principle:

Rp =

{
Rmin, if S |= p,

Rmax, otherwise
(2)

The logical NOT swaps minimum and maximum values:

R¬Φ =
1

RΦ
(3)

Therefore, in case of a negated predicate:

R¬p =

{
Rmax, if S |= p,

Rmin, otherwise
(4)

The resistance of a logical AND is computed as follows:

if Φ =
∧
φi ⇒ RΦ =

∑
Rφi

(5)

Finally, the resistance of a logical OR is computed as fol-
lows:

if Φ =
∨
φi ⇒

1

RΦ
=
∑ 1

Rφi

(6)

Example: given a goal G = a ∧ (b ∨ ¬c), this allows
deriving the R2S formula as

R2SG = Ra + (
1

1
Rb

+ 1
R¬c

) (7)

Let us suppose the current state is the most far from the
solution: S0 = {c},

R2SG(S0) = Rmax + (
1

1
Rmax

+ 1
Rmax

) =
3

2
Rmax (8)

Now, making a step forward the solution: S1 = {b, c},

R2SG(S1) = Rmax + (
1

1
Rmin

+ 1
Rmax

) ≈ Rmax (9)

Finally, reaching the goal state S2 = {a, b, c}

R2SG(S2) = Rmin + (
1

1
Rmin

+ 1
Rmax

) ≈ 2Rmin (10)

The metric proved to be robust to logical transformations
(i.e. De Morgan’s Law).

Surely, this metric has several limitations. As an instance,
it does not consider predicate interpretation. Indeed, not all
predicates in a formula have the same importance. However,
in a planning problem, R2S may be used when no other do-
main heuristics exist.

We already adopted this metric in classical planning by
adopting a best-first exploration approach in the domain
of service composition (Sabatucci, Cossentino, and Lopes
2019). This planner performed well, allowing a fast conver-
gence towards the solutions. However, significant problems
of scalability occurred when moved towards other applica-
tions domains with high branching factors.

In particular, this approach proved its limits in some
specific situations. One of these is illustrated below.

Concatenating actions when the branching factor is high.
Let us suppose that the given goal is to reach a state of
the world in which the predicate b is true. The initial state
W0 |= a, and a couple of actions are applicable to produce
state neighbours. However, we discover that, for producing
a state where b is true, it is necessary to use a combination
of 4 actions:



Algorithm 1: Function for calculating the R2S
of propositional goals.

1 Function R2S(State,φ):
2 case φ = p is a predicate do
3 if State |= p then
4 return Rmin

5 else
6 return 1/Rmax

7 end
8 case φ = α ∧ β do
9 return R2S(α) +R2S(β)

10 case φ = α ∨ β do
11 return 1/(1/R2S(α) + 1/R2S(β))
12 case φ = ¬α do
13 return 1/R2S(α)
14 end

(W0)
A1−−→ (W1)

A2−−→ (W2)
A3−−→ (W3)

A4−−→ (W4)

where W4 |= b. Now, when the planner is exploring W0,
evaluate all its neighbours, and all of them have the same
R2S. Consequently, the next state to explore is selected ran-
domly. Even switching to a breadth-first strategy does not
perform well: in the worst case, the entire the tree (of depth
4) will be explored.

With a branching factor of 2, the number of states is 30.
However, when the branching factor grows, there are no
grants that W4 is discovered in a timely fashion. Indeed,
with a branching factor of 10, in the worst case, it could
be necessary to explore

∑4
i=1 10i ≈ 11, 000 states before

discovering W4. Furthermore, increasing the branching
factor to 40 the number of states is about 2.6 million putting
in crisis almost all the state of the art planners.

Next sections illustrate how, in order to face hard-
combinatorial problems, we exploited a MonteCarlo algo-
rithm.

Montecarlo Search
Monte Carlo methods have their roots in statistical physics
where they have been used to obtain approximations to in-
tractable integrals. So far, they have been used in a wide ar-
ray of domains.

The power of Monte Carlo with games and decision
theory has been already demonstrated by achieving world
champion level play in games such as Bridge (Ginsberg
2001) and Scrabble (Sheppard 2002).

Supported by these impressive results, recently, Monte-
Carlo techniques have been employed in planning (Nakhost
and Müller 2009; Silver and Veness 2010). The main princi-
ple is that, given a state, the next action may be selected by
using random simulations. The simulation provides an ap-
proximate value of an action, to be used efficiently to adjust
the policy towards a best-first strategy (Nakhost and Müller
2009).

The Simulation phase is critical in the algorithm; it gen-
erates random moves deeply in the tree, until a terminal po-

sition. Then it exploits some heuristics to evaluate these ter-
minal states. This strategy is particularly suitable for games,
but it may be difficult to use in other domains. For instance,
in a symbolic planning problem where goals are predicates,
Pellier et al. in (Pellier, Bouzy, and Métivier 2010) argued
that random explorations might be inefficient. Indeed, the
probability that a given simulation finds a goal state is low.

In literature, there exist many enhancements to Monte-
Carlo planning that could be applied to any domain without
prior knowledge about it. However, until now, these tricks
typically offer useful improvements when used in a particu-
lar type of domain (Browne et al. 2012). Monte Carlo meth-
ods have their roots in statistical physics where they have
been used to obtain approximations to intractable integrals.
So far, they have been used in a wide array of domains.

MonteCarlo Tree Search with R2S
The ideas behind the R2SMonteCarlo tree search algorithm
are: 1) during the simulation phase, stopping with an incom-
plete outcome when there is any change in the R2S value; 2)
during the back-propagation phase, generating a reward for
nodes with negative variations of R2S.

Selection: every iteration starts with node selection. This
phase aims to randomly select one node among the most
urgent ones to be expanded. In order to model this ur-
gency, a Tokens list contains references to some ‘inter-
esting’ nodes of the Tree. Aside the root node, that is al-
ways in the list, a node is considered attractive if it offers
an advancement in terms of full goal satisfaction (i.e. when
R2S(root)−R2S(node) > 0).

The algorithm updates the Tokens list at the beginning
of the algorithm and after every simulation. The updating
policy has been studied to balance the probability to select
either the root node or a promising node.

Expansion: this phase does not present any novelties.
One child node may be added to the tree according to the
available actions. A node is expandable if it is not an exit
node (i.e. the goal is not yet fully satisfied) and it has unvis-
ited children.

Simulation: a simulation runs, starting from the selected
node, and it stops when a new node is discovered that offers
a decrement of R2S (it is marked as delta-node). Differently
by traditional strategies, paths towards a delta-node are not
discarded after a simulation. This phase is the essential nov-
elty of the algorithm.

BackPropagation: as usual, the simulation result is prop-
agated back to the root node for updating statistics of nodes
and rewarding paths that conducted to delta-node.

Indeed, after a simulation ended up with a delta node, ev-
ery node of the path is examined. All delta nodes in the path
receive a reward, consisting in adding node’s references to
the Tokens list.

Details about the Algorithm
Algorithm 2 shows an outline of the steps of the proposed
R2S MonteCarlo Search. For the sake of simplicity, Tokens
is a global data, accessible from all the functions. It may be
implemented as a list of references to tree nodes.



Algorithm 2: MonteCarloR2S
Data: Tokens

1

2 Function Main(root,G,A):
3 while CheckTerminationCond() do
4 v0 = TreePolicy(root)
5 vl = Simulation(v0, G,A)
6 BackPropagation(vl,∆(vl))
7 end
8 return ExtractSolutions()
9

10 Function TreePolicy(root):
11 if Tokens is empty then
12 Tokens← update tokens(root)
13 end
14 Tokens = shuffle(Tokens)
15 v0 = Tokens.head
16 Tokens = Tokens.tail
17 return v0
18

19 Function Simulation(v,G,A):
20 δ = 0
21 vi = v
22 while δ == 0 ∧ vi is not exit do
23 vi = ExpandOrChild(vi, A,G)
24 δ = R2S(v,G)−R2S(vi, G)
25 end
26 δ(vi) = (δ > 0)
27 return vi
28

29 Function ExpandOrChild(v,A,G):
30 U = untried(v,A)
31 if U is not empty then
32 a = U.head
33 v′ = expand(State, a)
34 if v′ |= G then
35 set v′ as exit node
36 end
37 else
38 v′ = random child(v)
39 end
40 return v′

41

42 Function BackPropagation(v,∆):
43 visit(v)+ = 1
44 if ∆ > 0 then

/* reward */
45 if δ(State) > 0 then
46 Tokens← update tokens(v)
47 end
48 end
49 if v is not root then
50 BackPropagation(parent(v),∆)
51 end

The main function runs over a number of iterations ac-
cording to a termination condition. Typically the termination
condition poses a temporal bound for stopping the search.
Other criteria may be either a max number of iterations or a
max number of visited nodes of the tree.

The main iteration consists of three standard steps (lines
4-6): TreePolicy for selecting the target node, Simulation
and BackPropagation. During the iterations, the tree is ex-
plored, and nodes are marked with information like:
• exit : Boolean when true, it indicates the node is an exit

node of the tree, i.e. the path π(root, exit) is a possible
solution;

• δ : Boolean when true, it indicates the node is a
delta node i.e. an ‘interesting’ node such that: ∀p ∈
π(root, node), p 6= node : R2S(node,G) < R2S(p,G)

• visit : Integer is a counter for the number of times a
node has been visited;
At the end (line 8), the algorithm simply looks at exit

nodes and returns all the paths π(root, exit).
The TreePolicy function (lines 10-17) selects the next

node to be expanded. This consists of randomly picking one
node from the Tokens list. At the first iteration, when the
list is empty, it is filled with references to the root node. In
the beginning, most of the times, this function will return the
root node. However, by increasing the tree size, the proba-
bility to explore other nodes increases (see Figure 1).

Figure 1: The probability to select a non root node converge
after a number of iteration equals to the branching factor.

The Simulation function (lines 19-27) is invoked with the
selected node v as parameter. This function performs a ran-
dom walk, of variable depth, starting from v. At each step, it
updates vi with one of its child, obtained by selecting a ran-
dom action (line 23). The simulation terminates when reach-
ing a terminal node of the tree (a node that cannot be further
expanded, for instance, an exit goal), or when the new vi im-
proves or decreases the goal satisfaction, respect to the initial
node v (line 24). The last step before returning the node is
marking the delta-value of the node to true when it improves
goal satisfaction (line 26).

The expansion strategy is in charge of the ExpandOrChild
function (lines 29-40) that is a standard policy, reported for
completeness. Given a node v it looks at untried actions for
that node. If all the actions have already been tried, then it
randomly selects one of the children (line 38). Otherwise, it
selects an action a (line 32) and applies a to v thus generat-
ing a new node v′ (line 33). It also checks whether the new
node is an exit node (lines 34-36).



The BackPropagation function, basically, updates the
Tokens list when the parameters ∆ is greater than zero, i.e.
when the last simulation improved goal satisfaction. This is
a recursive function: the parameter v is initially set to that
terminal node, and successively, it assumes the values of all
the parent nodes until the root. Every time, a node is marked
as ‘δ’, the algorithm adds node references to the Tokens list
according to a reward strategy.

Different reward policies may be tuned according to dif-
ferent strategies: 1) a reference for each child, 2) propor-
tional to the R2S increment, 3) inversely proportional to the
depth in the tree. In order to avoid the problem of local min-
ima and plateau, the root node always has the highest prob-
ability to be selected than any other node.

Example and Some Property
Here we illustrate an example of tree construction, showing
the contribution of the three main steps.

Intending to illustrate the approach, we suppose a tree
with branching factor of 3, and a reward policy of type I:
1) root node is a delta node by default and 2) rewarding con-
sist of one reference for each node’s child. Therefore, in this
example, the reward is constant: 3 references.

At the very first iteration (see row n.1 in Figure 2), the
Tokens list only contains three references to the root node.
Clearly, the only possible selectable node is the root node.
In this case, the Simulation, starting from v0 creates a path
v0 − v8 where the last node, v8, has a better value of goal
satisfaction. Given that ∆ > 0, the path is not removed. On
the contrary, the leaf node is rewarded by introducing three
references to v8 in the Tokens list. Back propagating to the
root (that is a delta node for construction), also v0 is re-
warded. At the end of the iteration, the Tokens list contains
five references of v0 (the remaining 2 plus the new 3) and
three references of v8.

The second iteration is an instance of reduction of goal
satisfaction. The root node (with higher probability) is se-
lected again. However, the Simulation produces a path with
a ∆ < 0. For this reason, new nodes of the path may be
ignored. There is no reward, and therefore the Tokens list
remains the same, except than v0 has one reference fewer.

The third iteration selects v8 to be further expanded. A
new Simulation generates a path v8 − v12 where the last
node is again a delta node (∆ > 0). This time BackPropa-
gation rewards v12 as well as v8 and v0 (all the delta nodes
until the root). At the end of the iteration, the Tokens list
contains seven references of v0, five to v8 (the remaining 2
plus the new 3) and three references to the new v12 node.

In the last shown iteration, the root node is again selected,
and this time the Simulation produces a new path v0 − v15
in which the leaf node is delta, and therefore path nodes are
maintained. BackPropagation rewards node v15 and the root
node.

The example is useful to illustrate some property of the
R2S MonteCarlo Search.

The first interesting property is the alternating node selec-
tion. The algorithm preserves a chance in choosing both the
root node and any delta nodes. This is important for two rea-
sons: when there are not delta nodes, the algorithm becomes

similar to a general MCTS approach; when there are delta
nodes, these vary the probability distribution, creating dy-
namism in tree exploration and potentially improving search
performances. Next section presents an experimental evalu-
ation that supports this claim.

A significant difference with most of MonteCarlo ap-
proaches is that Simulation is not only used to estimate a
node value, but it may generate useful nodes to explore fur-
ther. In other words, whereas traditionally the tree is built
incrementally by evaluating node’s payout via simulations,
the R2S approach, giving importance to some regions than

v0: 3

v8: 3

Δ > 0

v0
v0

v1

v8

v0: 5 v0
v1

v8

v0
v1

v8

v9

v11
Δ < 0

v8: 3
v0: 4 v0

v1

v8

v0
v1

v8

v12
Δ > 0

v8: 5
v0: 7

v12: 3

v0
v1

v8

v12

Tokens TreePolicy Simulation BackPropagation

v8: 3
v0: 5

v8: 3
v0: 4

v8: 5
v0: 7

v12: 3

It

1

2

3

4 v0
v1

v8

v12

v13

v15

Δ > 0

v8: 5
v0: 9

v12: 3
v15: 3

Figure 2: Example of execution of the R2S MonteCarlo Tree
Search. The first four iterations are shown in rows. The
first column shows the iteration number. The second col-
umn shows the Tokens list at the beginning of the iteration;
blocks show the number of tokens for each node. The third
column reports the tree at the beginning of the iteration. The
Yellow colour is used to highlight the selected token and tree
node. The Fourth column shows how the Simulation works.
Dotted lines indicate there are omitted nodes, not shown for
compactness. The last node is annotated with positive or
negative ∆. Nodes in Grey colour will not be added to the
tree. Finally, the last column shows how the Tokens list is
updated consequence of the BackPropagation.



others, it allows a very asymmetric tree growth that better
suits for trees with high depth. Figure 3 provides an instance
of asymmetric exploration of a tree with a branching factor
of 40.

Figure 3: Example of Asymmetric exploration of the tree.
After 208 iterations and 700 visited nodes, the R2S Monte-
Carlo search returned with 3 solutions.

Another property concerns nodes that initially seems
promising but that lead to dead points. When a new delta
node is discovered, the reward policy is studied to grant the
possibility to expand all the node’s child. Indeed, the num-
ber of references is equal, at least, to the node branching
factor. However, selecting a node in which the simulation
phase leads to a non-delta node, it decreases the probability
to select that node again. The probability goes down if all its
children have been already explored without results. How-
ever, whatever node, the probability is never zero, because
there is always a chance that a parent root is selected. This is
similar to the pruning of unpromising paths, with a chance
to recover them in future.

Evaluation
We used the following an application domain from Smart
Ships for conducting some preliminary experiments.

The Shipboard Power System (SPS) is the component of
a ship that is responsible for granting energy to navigation,
communication, and many other operational systems. It is
consists of various electric and electronic equipment, such
as generators, cables, switchboards, circuit breakers, fuses,
buses, and many kinds of loads. In modern ships, this com-
ponent is more and more similar to an IoT application.

The Reconfiguration of a SPS (Sabatucci L., Cossentino
M., De Simone G. and Lopes S. 2018) is a critical operation
necessary to grant the continuity of services in unexpected
situations, such as in the case of severe or major faults. A
software manager drives the reconfiguration procedure. It
controls generators, switchers and loads in order to config-
ure the electrical schema according to a mission to accom-
plish. In this way, the manager is able: to isolate faults, to

Figure 4: Box-plot of the outcome of four different algo-
rithms in 20 runs (a different goal characterizes each run, au-
tomatically generated). Results are obtained, giving each al-
gorithm the same temporal cut-off of 5000ms, time in which
they must found the highest number of solutions.

restore/transfer power to vital loads, but also, more gener-
ally, to optimise the management of electrical and electronic
equipment by improving efficiency.

In some previous works (Sabatucci, Cossentino, and
Lopes 2019; Sabatucci L., Cossentino M., De Simone G.
and Lopes S. 2018), we adopted a symbolic approach to im-
plementing the manager as a planner where ship missions
are encoded as goals. The plan represents the actions to op-
erate in order to switch from the current configuration to the
desired one.

The problem is combinatorial with a branching fac-
tor equal to the number of switcher in the circuit (in a
small/middle size ship they are in the order of 30-50). More-
over, in order to accomplish some goals, sometimes it is nec-
essary to operate a sequence of four/five actions (as the ex-
ample described in Section 2). For these reasons, a classical
planning approach degrades by increasing the scale.

In the following, we adopted the R2S MonteCarlo Search
with a mid-size problem of branching factor 40. We selected
the most ‘difficult’ initial configuration, i.e. all is switched
off. We also built a random mission generator, i.e. a function
that create random goals.

The experiment consisted of generating 20 different prob-
lem statements (initial state, actions and goals). For each of
them, a script executes four algorithms, setting a temporal
cutoff of 5000 ms. In this time, they must find the highest
number of solutions. The algorithms in this comparison are:
1) a best-first planner using the R2S metric for the next node,
2) a best-first planner customized with a utility function spe-
cific for the SPS reconfiguration domain, 3) a MonteCarlo
tree search with upper confidence bound, and 4) the R2S
MonteCarlo tree search.

The algorithm is implemented in the Scala language. We
used a 2.7 GHz Intel Core i5 and 16 Gb RAM to run the ex-
periment. Figure 4 graphically reports the results of the ex-



perimental phase. Each box plot describes the performances
measured for the four methods.

At a first analysis, it is quite clear that if a domain heuristic
is available, a best-first planner can find solutions in a timely
fashion: it represents the best approach dominating all the
other three ones.

However, when the domain heuristic is not available (or
it contains errors), the performances of the same planner
decades quickly. Even by using the R2S metrics, the planner
did not discover any solution. Conversely, the MonteCarlo
method did provide much more solutions, even if the plan-
ner with domain heuristics dominates its best performance.

Conversely, the R2S MonteCarlo approach, despite the
greater dispersion (the interquartile range) is characterized
by a median value that is close to the optimal result and an
upper quartile that is even better, respect to the best result of
the best-first planner with domain heuristics.

Conclusions
We have described a new planning algorithm based on a
combination of MonteCarlo tree search and a heuristic for
measuring the distance of a state to the desired goal. The al-
gorithm is based on a best-first search for exploring the space
state. When evaluating the next node, a simulation phase
tries to estimate the relative distance towards the goal by us-
ing the R2S metric. This function is automatically generated
from goal specification and allows estimating this distance.
To evaluate the algorithm, we used an experimental setting
based on a combinatorial problem from the Smart Ship do-
main. Results proved the algorithm performances are close
to those of an informed search (which provides the upper
bound).

This is a preliminary work; a deeper experimental anal-
ysis is required to understand performance characteristics.
We are considering to adopt a wider-range of comparative
benchmark experiments to gain a better representation of
how well the algorithm performs, specially against other
domain-independent heuristic approaches.

Furthermore, as future work, we are studying how to ex-
ploit the algorithm for reporting partial solutions when full
solutions do not exist or are not discovered in the time cut-
off. This may be very useful in critical scenarios (emergency
management, safety-critical systems) in which the partial
satisfaction of a goal is better than no actions.

References
Bodı́k, R., and Jobstmann, B. 2013. Algorithmic program
synthesis: introduction.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence. 2001 Jun; 129 (1-2): 5-33.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
Cenamor, I., and Pozanco, A. 2019. Insights from the 2018
ipc benchmarks. In Proc. of the Workshop of the IPC WIPC.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1-2):35–84.
Cossentino M., Sabatucci L. and Lopes S. 2018. Partial and
full goal satisfaction in the musa middleware. In Multi-Agent
Systems - Prof. of the European Conference on Multi-Agent
Systems (EUMAS) 2018, volume 11450 of Lecture Notes in
Computer Science book series (LNCS), 15–29. Springer.
Francès, G.; Ramı́rez Jávega, M.; Lipovetzky, N.; and
Geffner, H. 2017. Purely declarative action descriptions
are overrated: Classical planning with simulators. In IJ-
CAI 2017. Twenty-Sixth International Joint Conference on
Artificial Intelligence; 2017 Aug 19-25; Melbourne, Aus-
tralia.[California]: IJCAI; 2017. p. 4294-301. International
Joint Conferences on Artificial Intelligence Organization
(IJCAI).
Ginsberg, M. L. 2001. Gib: Imperfect information in a com-
putationally challenging game. Journal of Artificial Intelli-
gence Research 14:303–358.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research 20:1–59.
Nakhost, H., and Müller, M. 2009. Monte-carlo exploration
for deterministic planning. In Twenty-First International
Joint Conference on Artificial Intelligence. Citeseer.
Pellier, D.; Bouzy, B.; and Métivier, M. 2010. An uct ap-
proach for anytime agent-based planning. In Advances in
Practical Applications of Agents and Multiagent Systems.
Springer. 211–220.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:127–177.
Sabatucci, L., and Cossentino, M. 2015. From means-end
analysis to proactive means-end reasoning. In Proceedings
of the 10th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, 2–12. IEEE
Press.
Sabatucci, L.; Cossentino, M.; and Lopes, S. 2019. Service
composition with partial goal satisfaction. In Proceedings
of the 1st Workshop on Artificial Intelligence and Internet
of Things co-located with the 18th International Conference
of the Italian Association for Artificial Intelligence (AIxIA
2019).
Sabatucci L., Cossentino M., De Simone G. and Lopes S.
2018. Self-reconfiguration of shipboard power systems. In
IEEE., ed., Proc. of the 3rd eCAS Workshop on Engineering
Collective Adaptive Systems, Trento (Italy).
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M.
2020. Subgoaling techniques for satisficing and optimal nu-
meric planning. Journal of Artificial Intelligence Research
68:691–752.
Sheppard, B. 2002. World-championship-caliber scrabble.
Artificial Intelligence 134(1-2):241–275.
Silver, D., and Veness, J. 2010. Monte-carlo planning in
large pomdps. In Advances in neural information processing
systems, 2164–2172.



Vallati, M.; Chrpa, L.; Grześ, M.; McCluskey, T. L.; Roberts,
M.; Sanner, S.; et al. 2015. The 2014 international planning
competition: Progress and trends. Ai Magazine 36(3):90–98.
Venero, S. K.; Schmerl, B.; Montecchi, L.; Dos Reis, J. C.;
and Rubira, C. M. F. 2020. Automated planning for support-
ing knowledge-intensive processes. In Enterprise, Business-
Process and Information Systems Modeling. Springer. 101–
116.


